Orphus

""


 Orphus

. ,

, . ( , ), , .

delta A_ = delta W_m

delta A = - [delta W_m]_( = const)

, , .

, .

__i = -__i = 1/c d_i/dt

:

delta A_ = 1/c (Sigma) d_i/dt I_i dt = 1/c (Sigma) I_i d_i

delta A . delta A + delta W_m = 1/c (Sigma) I_i d_i

, :

delta W_m = delta (1/2c (Sigma) I_i _i) = 1/2c (Sigma) I_i delta _i

, :

delta A = [delta W_m]_(I = const)

, : W_m = 1/2 L_11 I_1 ^2 + 1/2 L_22 I_2^2 + L_12 I_1 I_2

, , L_11 L_22 .

delta W_m = I_1 I_2 delta L_12

2 , 1 delta r_1.

, ,

delta A = F_1 delta r_1, F_1 - , 1.

- delta r1 = delta r2, , . , F_1 delta r_1 = F_2 delta r_2, F_1 = - F_2. , , .

- , - .

, dx , . : -Fdx = delta A_E - delta A_I - dW_L, delta A_E ..; delta A_I ;

dW_L .

delta A_E delta A_I , . dI d . :

dI = 1/(Rc) d/dt

delta A_E = (I+ dI)/c dt - I/c dt = dI/c dt = - dt/(Rc) d/dt = - I d/c

delta A_I = R(I + dI)^2/c^2 dt - RI^2/c^2 dt ~= 2RI dI dt/c^2 = -2Id/c^2

, , :

d W_L = d(LI^2/2)/c^2 = 1/2 I^2 dL/c^2 = 1/2 I d/c^2

-, dI = 0, I_0 = /R. -, d W_L

. , , , . ,

-F dx = - I d /c^2 + 2Id/c^2 - 1/2 I/c^2 d = 1/2 I d/c^2

-F = I/2c d/dx = d W_L/dx

dx , , N :

= N(I/c)*N/(l/( S) + 2x/S) = S N^2 (I/c) / (l + 2 x)

F >0:

F = S ( N I /(lc))^2


 Orphus