Теорема о непрерывности суммы функционального ряда.
Теорема. Если все члены ряда (1) - непрерывные на [a;b] ф-ции, а ряд (1) сх-ся равномерно на [a;b], то его сумма S(x) также непрерывна на отрезке [a;b].
Док-во: Пусть - произв.точка [a;b]. Для опр-ности будем считать, что (a;b). Нужно док-ть, что S(x)= непрерывна в , т.е <(2), [a;b]. По усл-ю, ряд (1) равномерно сх-ся на [a;b], т.е n[a;b] <(3), где =. Фиксируем номер , тогда при n= из (3) получаем: <(4). В частности, при x= находим <(5). Ф-ция (x) непрерывна в как сумма конечного числа непрерывных ф-ций. По опр-ю непрерывности [a;b] <(6). Восп. рав-вом S(x)-S()=(S(x)-(x))+( (x)- ())+(()-S()). Отсюда получаем, исп. (4)-(6) и нер-во треугольника : <, для [a;b], т.е справедливо утв-е (2). В силу произвольности точки ф-ция S(x) непрерывна на отрезке [a;b].