Система Orphus

Генераторы случайных последовательностей. Генераторы псевдослучайных последовательностей.

Генератор псевдослучайных последовательностей - алгоритм порождающий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению.

ГПСЧ ставит в соответствие набору символов z_1z_2\ldots z_l значение некоторой функции f(z_1z_2\ldots z_l)=f_1. Следующим l символам - f(z_{l+1}z_{l+2}\ldots z_{2l})=f_2. Получают набор значений f_1f_2\ldots f_N и используют их в качестве случайной последовательности.

Детерминированные ГПСЧ

Никакой детерминированный алгоритм не может генерировать полностью случайные числа, он может только аппроксимировать некоторые их свойства. Как сказал Джон фон Нейман, «всякий, кто питает слабость к арифметическим методам получения случайных чисел, грешен вне всяких сомнений».

Любой ГПСЧ с ограниченными ресурсами рано или поздно зацикливается — начинает повторять одну и ту же последовательность чисел. Длина циклов ГПСЧ зависит от самого генератора и составляет около 2n/2, где n — размер внутреннего состояния в битах, хотя линейные конгруэнтные и LFSR-генераторы обладают максимальными циклами порядка 2n. Если порождаемая ГПСЧ последовательность сходится к слишком коротким циклам, то такой ГПСЧ становится предсказуемым и непригодным для практических приложений.

Большинство простых арифметических генераторов хотя и обладают большой скоростью, но страдают от многих серьёзных недостатков:

  • Слишком короткий период/периоды.
  • Последовательные значения не являются независимыми.
  • Некоторые биты «менее случайны», чем другие.
  • Неравномерное одномерное распределение.
  • Обратимость.

В частности, алгоритм RANDU, десятилетиями использовавшийся на мейнфреймах, оказался очень плохим[1][2], что вызвало сомнения в достоверности результатов многих исследований, использовавших этот алгоритм.

Наиболее распространены линейный конгруэнтный метод, метод Фибоначчи с запаздываниями, регистр сдвига с линейной обратной связью, регистр сдвига с обобщённой обратной связью.

Из современных ГПСЧ широкое распространение также получил «вихрь Мерсенна», предложенный в 1997 году Мацумото и Нисимурой. Его достоинствами являются колоссальный период (219937-1), равномерное распределение в 623 измерениях (линейный конгруэнтный метод даёт более или менее равномерное распределение максимум в 5 измерениях), быстрая генерация случайных чисел (в 2-3 раза быстрее, чем стандартные ГПСЧ, использующие линейный конгруэнтный метод). Однако, существуют алгоритмы, распознающие последовательность, порождаемую вихрем Мерсенна, как неслучайную.

ГПСЧ в криптографии

Разновидностью ГПСЧ являются ГПСБ (PRBG) — генераторы псевдо-случайных бит, а также различных поточных шифров. ГПСЧ, как и поточные шифры, состоят из внутреннего состояния (обычно размером от 16 бит до нескольких мегабайт), функции инициализации внутреннего состояния ключом или зерном, функции обновления внутреннего состояния и функции вывода. ГПСЧ подразделяются на простые арифметические, сломанные криптографические и криптостойкие. Их общее предназначение — генерация последовательностей чисел, которые невозможно отличить от случайных вычислительными методами.

Хотя многие криптостойкие ГПСЧ или поточные шифры предлагают гораздо более «случайные» числа, такие генераторы гораздо медленнее обычных арифметических и могут быть непригодны во всякого рода исследованиях, требующих, чтобы процессор был свободен для более полезных вычислений.

В военных целях и в полевых условиях применяются только засекреченные синхронные криптостойкие ГПСЧ (поточные шифры), блочные шифры не используются. Примерами известных криптостойких ГПСЧ являются RC4, ISAAC, SEAL, Snow, совсем медленный теоретический алгоритм Блюма, Блюма и Шуба, а также счётчики с криптографическими хеш-функциями или криптостойкими блочными шифрами вместо функции вывода.

Примеры криптостойких ГПСЧ

Циклическое шифрование

В данном случае используется способ генерации ключа сессии из мастер-ключа. Счетчик с периодом N используется в качестве входа в шифрующее устройство. Например, в случае использования 56-битного ключа DES может использоваться счетчик с периодом 256. После каждого созданного ключа значение счетчика повышается на 1. Таким образом, псевдослучайная последовательность, полученная по данной схеме, имеет полный период: каждое выходное значение Х0, Х1,…XN-1 основано на разных значениях счетчика, поэтому Х0 /= X1 /= XN-1. Так как мастер-ключ является секретным, легко показать, что любой секретный ключ не зависит от знания одного или более предыдущих секретных ключей.

ANSI X9.17

ГПСЧ из стандарта ANSI X9.17 используется во многих приложениях финансовой безопасности и PGP. В основе этого ГПСЧ лежит тройной DES. Генератор ANSI X9.17 состоит из следующих частей:

  1. Вход: генератором управляют два псевдослучайных входа. Один является 64-битным представлением текущих даты и времени, которые меняются каждый раз при создании числа. Другой является 64-битным исходным значением. Оно инициализируется некоторым произвольным значением и изменяется в ходе генерации последовательности псевдослучайных чисел.
  2. Ключи: генератор использует три модуля тройного DES. Все три используют одну и ту же пару 56-битных ключей, которая держится в секрете и применяется только при генерации псевдослучайного числа.
  3. Выход: выход состоит из 64-битного псевдослучайного числа и 64-битного значения, которое будет использоваться в качестве начального значения при создании следующего числа.
  • DTi — значение даты и времени на начало i-ой стадии генерации.
  • Vi — начальное значение для i-ой стадии генерации.
  • Ri — псевдослучайное число, созданное на i-ой стадии генерации.
  • K1, K2 — ключи, используемые на каждой стадии.

Тогда:

Ri = EDEK1,K2 [ EDEK1,K2 [ DTi] Vi ]
Vi+1 = EDEK1,K2 [ EDEK1,K2 [ DTi] Ri]

Схема включает использование 112-битного ключа и трех EDE-шифрований. На вход даются два псевдослучайных значения: значение даты и времени и начальное значение текущей итерации, на выходе получаются начальное значение для следующей итерации и очередное псевдослучайное значение. Даже если псевдослучайное число Ri будет скомпрометировано, вычислить Vi+1 из Ri не является возможным за разумное время, и, следовательно, следующее псевдослучайное значение Ri+1, так как для получения Vi+1 дополнительно выполняются три операции EDE.


Система Orphus

Комментарии